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We consider a simple model of particle transport on the line R defined by a
dynamical map F satisfying F(x+1)=1+F(x) for all x ¥ R and F(x)=ax+b
for |x| < 12 . Its two parameters a (‘‘slope’’) and b (‘‘bias’’) are respectively sym-
metric and antisymmetric under reflection xQ R(x)=−x. Restricting ourselves
to the chaotic regime |a| > 1 and therein mainly to the part a > 1 we study,
along the lines of previous investigations [R. Klages and J. R. Dorfman, Phys.
Rev. Lett. 74:387 (1995)] on the restricted, symmetric (b=0) one-parameter
version of the present model, the parameter dependence of the transport prop-
erties, i.e., not only of the ‘‘diffusion coefficient’’ D(a, b), but this time also of
the ‘‘current’’ J(a, b). A major difference however is that this time an important
tool for such a study has been available, in the form of exact expressions for J
and D obtained recently by one of the authors. These expressions allow for a
quite efficient numerical implementation, which is important, because the func-
tions encountered typically have a fractal character. The main results of our
present preliminary survey of the parameter plane of the model are presented in
several plots of these functions J(a, b) and D(a, b) and in an over-all ‘‘chart’’
displaying, in the parameter plane, in principle all possibly relevant information
on the system including, e.g., the dynamical phase diagram as well as, by way of
illustration, values of some topological invariants (kneading numbers) which,
according to the formulas, determine the singularity structure of J(a, b) and
D(a, b). What we regard as our most significant findings are: (1) ‘‘Nonlinear
Response’’: The parameter dependence of these transport properties is,
throughout the ‘‘ergodic’’ part of the parameter plane (i.e., outside the infinitely
many Arnol’d tongues) fractally nonlinear. (2) ‘‘Negative Response’’: Inside



certain regions with an apparently fractal boundary the current J and the bias b
have opposite signs.

KEY WORDS: Biased chaotic transport; transport coefficients; Markov parti-
tions; twist; linear response; negative currents; fractals.

1. INTRODUCTION

In many branches of science and even in mathematics, the study of highly
simplified models, alongside with a general theory on the particular subject,
is recognized as of great value. Such a model (or ‘‘toy’’ model) especially if
it can be analyzed in great detail, can serve as an illustration of the general
theory, can suggest further directions of development thereof and, if the
model exhibits unusual counter-intuitive behaviour, may even make a revi-
sion of some tacitly made assumptions of the general theory necessary. In
Dynamical Systems Theory, a rich source of such simple toy models are
those models the dynamical map of which is a ‘‘Lifted Circle Map’’
(‘‘LCM’’).

By ‘‘Lifted Circle Map’’ we will understand here just any real-valued
function F on R satisfying for all x ¥ R the relation

F(x+1)=1+F(x). (1)

Maps of this kind, however under the restriction of having to satisfy
some further continuity condition, have been named, by Misiurewicz,
‘‘old,’’ as an acronym of ‘‘Lifted map of Degree One.’’ However, we will
not use that name already because for the time being we will not impose,
unless explicitly mentioned, any further restriction other than Eq. (1).

By a ‘‘LCM model’’ we will now understand a dynamical model,
meant to be that of a physical system, which is not only defined by a phase
space X and a dynamical map f of X into itself, but also some further
structure which is invariant under the action of f; and possibly also a
function v on X such that v(x) is the outcome of a measurement on the
system if the system’s representative point is located at the point x in phase
space.

The theory of ‘‘LCM models’’ has a long history, dating back at least
as far as 1895 when Poincaré (cf. ref. 1) defined the ‘‘rotation number’’
r(F) for the subclass of the LCM’s which are ‘‘orientation preserving
homeomorphisms,’’ i.e., strictly increasing, continuous and with a contin-
uous inverse. Poincaré’s definition of r — r(F, x0) was by the following
limit (if it exists):

r(F, x0)=lim
tQ.
xt/t (2)
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where the xt for t \ 1 are defined in terms of x0 by the dynamical equation
(t \ 0)

xt+1=f(xt). (3)

A consequence of Poincaré’s restriction was that this limit then always
exists and that its value is independent of x0, but it made such maps also
rather uninteresting from a physical point of view because such models
could not display diffusive behaviour. In hindsight it may be surprising,
but it was not before 1982 that physicists (2–5) discovered that, without the
restriction of monotonicity, models of this class could also display diffusive
behaviour. Going now in a few big steps through the subsequent history of
the subject, we mention only some crucial developments which led up to
the present work and place the latter in a certain context.

At first, after this discovery, attention naturally focussed on the
determination of the diffusion coefficient of various such dynamical
models. This was done both numerically and also exactly by mathematical
means. (2–5) As it turned out, the exact answers were only obtained for
piecewise linear maps, and for these the method which was used was one of
finding close by in parameter space a map having a Markov partition and
then performing the necessary algebra on the corresponding Markov matrix.

It then turned out that such exact results always corresponded to
isolated points in parameter space, whereas at the same time, with the
increasing number of cases where such exact answers were derived, the
parameter dependence of D started to look more and more complicated,
and hence interesting. It was at this point that a determined effort was
undertaken, by J. R. Dorfman and one of the authors, to try to improve,
in some way, the existing techniques for solving this problem so that also
cases with Markov partitions of increasingly higher orders could be
handled efficiently enough so that the fine structure of the parameter
dependence of D could also be determined. As a model for applying their
technique on, these authors then chose a particularly simple model, which
is the symmetric b=0 version of the two-parameter model of the present
paper. What they then discovered was, a.o., that this diffusion coefficient,
D(a, 0)=c2(a, 0) in the notations of this paper (cf., e.g., Eqs. (74) or (75)),
is a continuous but fractal function of the parameter a. (6–8)

The present work is in a sense a continuation of the latter work,
differences however being that this time use is made of the set of exact
expressions for these transport properties such as D, and that the model
has one more system parameter, b, also called ‘‘the bias,’’ which makes it
possible to study now also symmetry breaking phenomena, analogously to
the theory of phase transitions in Equilibrium Statistical Mechanics.
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1.1. Related Results in the Literature

(1) As it turned out, after the exact results on this natural one-
parameter extension of the original model of refs. 6–8 had been derived, it
was found that it contained, as another one-parameter specialization, also
another model which is extremely simple and a classic model, known from
the text books, carrying names such as the ‘‘Beta transform model’’ (9) or
the ‘‘Renýi map model.’’ (10) These models are not obviously LCM models
but many of their properties relate to similar properties of its extension, the
present model.

(2) One of the results in ref. 9 is particularly relevant for our present
discussion since it contains a result analogous to the fractal parameter
dependence of D found in refs. 6–8. It is the result that also in that other
one-parameter model a quantity was found to have such behaviour of
being continuous but obviously having a fractal nature. The quantity in
that case was the time of slowest decay. The continuity result stated in the
present paper comprises and considerably generalizes both results, those of
refs. 6–8 and of ref. 9. The proof of that generalization, as discussed
further in Section 8.2, follows closely that of the latter reference.

(3) Another related work which should be mentioned here is the
work of Mori, (11) whose result is in one respect more general than the exact
result for the Fredholm determinant function D(l, u) of Section 7, but in
another respect a more special one, as will be discussed later in Section 5.

(4) Good general references to the subject of the present paper are
refs. 12–14.

1.2. Outline of the Paper

An outline of the remaining parts of this paper is as follows: We will
first, in Section 2, introduce successively some of the notations and con-
cepts to be used in the sequel. This starts with (a) cumulants, then (b) the
concept of the ‘‘long term behaviour’’ of a stationary stochastic process,
which is then (c) extended to a process generated by a dynamical variable
on an ‘‘abstract dynamical system.’’ This concept will then (d) turn out to
contain the information one is most interested in in nonequilibrium theory,
i.e., the transport coefficients in the case of near-equilibrium states.

All of these considerations are intended to be only ‘‘formal’’ in the
sense that no conditions of validity are stated let alone that mathematical
proofs would be provided. But they are also, intentionally, extremely
general.

One reason for trying to be that general is that this may sometimes
lead to simplification in the presentation of a problem and then may make
a solution easier rather than more difficult to find.
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Along these lines, (e) the formal considerations are continued until the
problem of calculating the properties of equilibrium and of near-equilib-
rium transport is reduced to that of calculating a particular (‘‘weighted’’)
Fredholm determinant. Subsequently, in Section 3, phase space is restricted
to be just the circle, or its ‘‘lift,’’ the line R, in which case the class of
dynamical models arrived at is that of the so-called ‘‘Lifted Circle Map
models’’ or ‘‘LCM’’ models mentioned above.

In this case the programme can be carried through one step further,
also because of the special form taken by the weight function.

It is shown that the complicating feature, that of the ‘‘weight’’ asso-
ciated with the Perron–Frobenius (from now on abbreviated as ‘‘PF’’)
operator can then be moved ‘‘out of the way’’ by transferring to a repre-
sentation of probabilities on the line R where the probability distributions
satisfy a quasiperiodicity condition (cf. Eq. (38) later).

In Section 5 a further specialization is made, to piecewise linearity of
the dynamical map F, in which case the programme has been carried
through to its end and an explicit expression is obtained for a weighted
Fredholm determinant which is relavant to the problem. It contains the
information on the above mentioned properties of equilibrium and of
‘‘near-equilibrium’’ transport, but also on time dependent properties such
as autocorrelation functions. These results will be presented elsewhere. (15)

Then finally, in Section 6, via a last specialization, our special two-
parameter ‘‘toy’’ model is reached on which, from then on, all our atten-
tion will be focussed.

In Section 7 the centrally important ‘‘Consistency Function’’ will be
constructed for this model, leading to the explicit expressions for its trans-
port coefficients.

Next, in Section 8 some of the direct corollaries of these latter results
will only be touched upon. These involve two aspects of the solution: (a)
continuity properties of the transport properties; and (b) questions of the
occurrence of Markov partition points in parameter space.

Next, Section 9 contains a summary of the formulas specifying the
boundaries of the Arnol’d tongues in the entire range a > 0. These results
comprise results of ref. 16 for the non-chaotic regime and our own ones for
the chaotic regime. The two collections of formulas are written in a united
notation which brings out some correlations between the two kinds of
results. Both collections of results were instrumental in preparing part of our
final Fig. 7, which displays the most significant properties of the model.

In the subsequent Section 10 we discuss the various types of response
encountered in our model system.

Then, in Section 11, we discuss in detail the seven figures attached to
the paper.
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The paper then ends with a discussion of the results in Section 12 and
with a summary of the results in Section 13.

2. FORMAL CONCEPTS

In this section we will introduce some formal notions starting from
well-known ones such as that of a ‘‘cumulant,’’ ending up with that of the
weighted Fredholm determinant associated with a dynamical variable on
an ‘‘Abstract Dynamical System,’’ the determination of which is of the
highest interest in physical applications of Dynamical Systems Theory:
Many properties of dynamical systems, in equilibrium as well as in non-
equilibrium states, could be obtained if an efficient way of calculating that
Fredholm determinant function could be found. Whereas it might seem
far-fetched to expect a solution of a problem that far-reaching, it should
be noted that there already exist several exact partial solutions of that
centrally important general problem, one of which is the fundamental
formula of Gibbs for the equilibrium state of a Hamiltonian system, the
importance of which for Equilibrium Statistical Mechanics need not be
stressed.

2.1. Cumulant Rates and Long Term Properties of a Stochastic

Process

We recall that the nth order cumulant on(v) of a random variable v is
defined by the formal relation

C
.

n=1
on(v) un/n!=log OeuvP (4)

A natural generalization of this concept is to apply it in a particular
manner to a stationary real-valued stochastic process

vF — {vt | t ¥ Z}. (5)

To this end we ‘‘integrate’’ this process to a new process VF —
{Vt | t \ 0} by defining, for t \ 0, Vt as the sum

Vt=C
t−1

s=0
vs. (6)
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By then defining Qt(uvF ) by

Qt(uvF )=OeuVtP (7)

=exp 1 C
.

n=1
on(Vt) un/n!2 (8)

and taking the limits

cn(vF )=lim
tQ.

1
t
on(Vt)/n! (9)

and

c(uvF )=lim
tQ.

1
t

log Qt(uvF ), (10)

and assuming that taking limits and series expansion commute here, we
also have

c(uvF )=C
.

n=1
cn(vF ) un. (11)

We will refer to cn(vF ) as the nth order ‘‘scaled cumulant’’ or ‘‘cumulant
rate’’ and to c(uvF ) as the ‘‘scaled cumulant generating function’’ of the
process vF.

On this generalization or extension to stochastic processes we note the
following:

(1) The terminology is consistent with the name ‘‘cumulant density’’
used in ref. 7 for the related concept where the average is taken over space
instead over time as is the case here.

(2) The concept is a generalization or extension to stationary
stochastic processes because, in the special case of a process consisting of
independent identically distributed random variables, the two concepts
coincide (apart from a conventional factor n! in the case of the nth order
cumulants).

(3) A difference between the extension and the original concept is
that, whereas the set of cumulants of a random variable determines, in a
large of cases, the distribution of the random variable uniquely, that is no
longer true for a stochastic process.
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(4) The present extension is useful because, in the case of a stationary
stochastic process, its scaled cumulant generating function will contain, in a
precise manner, a type of information on the process which one would call
(as we will do) ‘‘the Long Term Behaviour’’ (‘‘LTB’’) of the process.

(5) The function c(uvF ) is, by itself, well-known in many fields and
then may appear under many different names.

2.2. Long Term Behaviour (LTB) in Abstract Dynamical Systems

Next we consider the case that the stationary process of the preceding
Section is generated by a dynamical process, or rather by observations on it
in terms of a phase function v.

Accordingly, we will now suppose that we are given a set X (‘‘phase
space’’), that S is a s algebra of subsets of X, that M is the linear space
over the complex numbers C spanned by the measures on (X,S) and that
f (‘‘the dynamical map’’) is a S-measurable map of X into itself.

The motion through X of a phase point representing the system is
assumed to proceed according to the dynamical law Eq. (3).

This then defines our Abstract Dynamical System.
We also assume that v (‘‘phase function’’ or ‘‘dynamical variable’’) is a

real-valued S-measurable function on the measurable space (X,S).
Denoting now also by mt ¥M the measure determining the probability

distribution of the position xt of the representative phase point of our
dynamical model at a time t, the movement of the phase point as given by
Eq. (3) causes the successive measures mt to be related by the linear equation:

mt+1=Lf mt, (12)

where Lf is called the Perron–Frobenius (‘‘PF’’) operator induced by f. This
operator induces a linear transformation on the space of measures on M.

An important problem now is to determine, in the present case of our
general dynamical model, whether the above limits in Eqs. (9) and (10)
exist and if so, whether they are then independent of m0 (in which case they
will be written respectively as cn(v) and c(uv)), and then also whether the
interchange of limits as expressed by Eq. (11) holds true.

2.3. The Formal Weighted Perron–Frobenius Operator

Continuing in the same formal manner we may write the function
Qt(u | vF ) of the previous Section in the form

Qt(uvF )=Oa(uv)|Lf(uv) t |b(uv)P (13)
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for some nonvanishing linear functional Oa(uv)| and—function |b(uv)P
which are independent of t.

Herein Lf(uv) is a weighted Perron Frobenius operator which is
related to the original, ‘‘unweighted’’ one, Lf, by

Lf(uv)=Lfeuv (14)

where v is the operator which, in its coordinate representation on X, is
equivalent to multiplication by the phase function v of the preceding
Section 2.2.

Again, the above formulas can be made plausible as ‘‘formally valid’’
by noting that there exist nontrivial examples for which they are valid.

If we now make the further assumption that, for u real and |u| suffi-
ciently small, the above weighted PF operator is irreducible and has an
integral kernel in its ‘‘X-representation’’ which is nonnegative, this would
allow application of the PF theorem, leading to the conclusion that this
operator has a unique positive eigenvalue l0(uv), to be referred to as ‘‘the
PF eigenvalue’’ (of this weighted PF-operator).

For small enough |u|, this eigenvalue then would also be the largest
one in absolute magnitude, leading then to the conclusion that c(uv) would
be expressible by the relation

c(uv)=log l0(uv), (15)

whereas l0(uv) would be a root of an equation of the form

D(l0(uv), uv)=0 (16)

with D a function expressible in terms of a determinant, in the form:

D(l, uv)=det 11−1
l
Lf(uv)2 . (17)

This function D(l, uv) here would, in some sense, be ‘‘the Fredholm
determinant’’ of the operator Lf(uv).

Furthermore, this root l0(uv) would then be uniquely determined,
among all roots of the equation (16), by the condition

l0(uv)Q 1 for uQ 0. (18)

This then would finally have reducd the general problem, i.e., that of
determining the equilibrium state and the near-equilibrium transport
properties of a general dynamical system, to that of the calculation, in an
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efficient manner, of the above Fredholm determinant function D(l, uv)
(we refer here also to a similar description in Section 15 of ref. 14, where
also the corresponding references to the literature can be found).

2.4. On How to Proceed from Here, in the General Case

We now consider briefly, in passing, before we specialize to one-
dimensional phase space, what options there might exist for proceeding in
this general situation towards developing a feasible generally applicable
calculational method.

It seems that the following are at the moment the most promising
ones:

(1) To expand, in Eq. (17), the determinant function into inverse
powers of l and calculating, as far as possible, its coefficients which then
have the form of weighted sums over periodic orbits of the map f. This is,
in essence, the Periodic Orbit Expansion method. (6) In principle this
method is generally applicable, but this statement should be taken only in a
‘‘formal’’ way until also an efficient calculational scheme for applying it in
a general situation has been found.

(2) Designing a systematic algorithmic approximation method for
arbitrary dynamical systems in terms of (approximate) Markov partitions
of phase space and then proceeding according to that method.

Although there seems to be nothing in the Markov partition method
which would put any restriction on the dimension of phase space, a tech-
nique for applying it in a general situation appears not to be available
at the time. Hence, the same remark as above seems to apply here too:
Practical application may crucially depend on the construction of an effi-
cient algorithm.

(3) For completeness’ sake we note that the first order cumulant rate
c1(v) is a linear functional whose knowledge is equivalent, as mentioned
already in the previous Section 2.1, to knowing the equilibrium state of the
sytem. The remark now is that we only have to specialize to Hamiltonian
systems to arrive at a case in which the general problem already has been
solved exactly and explicitly long ago, in the form of Gibbs’s formula for
the equilibrium state of a Hamiltonian system.

In order to make progress we will now impose, in the next section, the
drastic restriction on the phase space of being one-dimensional.

Because of our motivation to study transport, it is important for us to
have a phase space which is not simply connected, but neither has sin-
gularities; hence, there is no other possibility than to choose for this the
circle.
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3. CIRCLE GEOMETRY

As a preparation, we will recall some simple circle geometry.

3.1. Preliminaries

The definition of a LCM has already been given in the introduction. It
is that of a real valued function on R satisfying Eq. (1).

We introduce now also the ‘‘unit translation map’’ T by

for all x ¥ R: T(x)=1+x. (19)

Then the above defining relation (1) can equivalently be written as the
‘‘commutation relation’’

FT=TF. (20)

The set of real numbers R regarded as an additive group is the univer-
sal covering group of the circle considered as the factor group R/Z.

Both R/Z and R may also be regarded topologically, in which case the
latter is the universal covering space of the former.

3.2. Splitting a Real Number

Now we introduce some notation which we need for clarifying the
relation between a circle (with circumference one) and the real line.

For the convenience of constructing a corresponding coordinate
system, we choose a fixed half-open half-closed unit sub-interval of R, I0.

In terms of this, an arbitrary real number x ¥ R can be decomposed
uniquely into a pair of numbers

xQ (y, n) (21)

by the relation

x=y+n (22)

and the conditions

y ¥ I0 and n ¥ Z. (23)

We will also write this as

y=p(x), n=s(x), (24)

wherein, obviously, p, and therefore also s, is a projection map.
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3.3. Splitting a Lifted Circle Map

We define also the translated unit intervals In by

In=TnI0. (25)

Then, analogously to the splitting of a real number, also an arbitrary
LCM F may now be split in a unique manner into a pair of functions
according to

FQ (f, m) (26)

wherein these two functions are defined by the relations

F=f+m (27)

and the conditions

if x ¥ In then f(x) ¥ In (28)

and

m(x) ¥ Z. (29)

It then follows readily that

mT=m, (30)

i.e., m is a Z-valued periodic function with period 1, and

fT=Tf, (31)

i.e., f is a LCM of a special class, one which maps every In onto itself, and
that of course in an identical manner.

One can now also show that the map FQ f is a projection, that the
above decomposition of an arbitrary LCM F into a pair (f, m) is invert-
ible and that, for the inverse map (‘‘map of maps’’) from the pair (f, m)
the two components can be chosen independently of one another.

Because f can be obtained from F by a projection, F is called, as is
usual, a ‘‘lift’’ of f. The function m determines, in this context, to which
function F the function f is lifted. It may therefore appropriately be called
the ‘‘lift function.’’
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4. THE ABSTRACT LIFTED CIRCLE MAP MODEL

We now discuss the class of dynamical models (termed ‘‘LCM
models’’) whose dynamical map is a LCM. There are two ways of consid-
ering what its phase space X in this case is. It is either: (I) the real line R or
(II) the circle R/Z.

Such a model is specified by:

(1) the collection of subsets of R which are to be considered ‘‘mea-
surable.’’ This amounts to the choice of a s algebra S of such subsets of R.
This algebra should be chosen to be T invariant.

(2) a lifted circle map F, also leaving S invariant. The circle map f
‘‘associated with F’’ via the choice of a fundamental interval I0, as in
Section 3, will then also leave S invariant.

Then to each of these maps T, F and f there will exist a corresponding
PF operator leaving invariant the space M spanned by the measures on S;
and

(3) an ‘‘initial measure’’ m0 chosen from M. Without lack of general-
ity, this choice can be made so as to vanish outside of I0.

4.1. Simplification by Gauge Symmetry: First Step

We now again take up the thread from Section 2.3 where we left it.
Due to the fact that for the calculation of transport properties the

function v is no longer arbitrary but has the special form given by

v(x)=F(x)−x (32)

it is now possible to rewrite the weighted PF operator of Section 2.3 start-
ing from relation (14) in successively simpler forms as follows:

Lfeuv=Lfeu(F(y)−y) (33)

=Lfeu(f(y)+m(y)−y) (34)

=euyLfeu(m(y)−y) (35)

’Lfeum (36)

=L (u)
F (37)

where, in the next-to last equation, the similarity symbol denotes similarity
of operators, and where in the last line, the superscript (u) refers to the fact
that the PF operator induced by F is in that case acting on a space of
functions satisfying the quasiperiodicity condition (38) below.

Negative and Nonlinear Response 833



In what we have termed the first way, (I), of considering the system
with the line R as its phase space, the above sequence of identities can also
be expressed by saying that the ‘‘weight’’ on the original PF operator has
been transformed away, at the ‘‘expense’’ that the PF operator LF (now
written as L (u)

F ) acts on a space of functions k, say, which satisfy the
‘‘quasi-periodicity condition c’’ as in

k(x+1)=e−uk(x). (38)

That such a transformation is possible can be seen to be due to the
fact that the problem is, by its nature, essentially a gauge theory.

In the second way, (II), of describing the system, with as phase space
now the interval I0 which is equivalent to a circle with one special point on
it, singled out, the above can be interpreted as follows: The PF appropriate
operator now moves probability along as prescribed by the dynamic equa-
tion (3) whereby conserving this probability, i.e., ‘‘locally;’’ but when that
special point has to be passed, probabilities are rescaled by a fixed factor eu

or its inverse, depending on the direction of passage. This can be expressed
by saying that probability is conserved ‘‘locally’’ but not ‘‘globally;’’ which
are ways of expression quite familiar in Gauge Theory. This representation
on the interval then is said to be one with ‘‘twisted’’ boundary conditions.

5. SPECIALIZATION TO THE CLASS OF GENERAL PIECEWISE

LINEAR LCM’S: FINAL STEPS TAKEN

We now further specialize to the class of LCM models whose dynami-
cal map F is piecewise linear.

For this class the calculation of the ‘‘twisted’’ Fredholm determinant
function of the PF operator Lf(u) has been carried through to the end,
meaning that the answer has been written in a form which is such that its
computation can be performed algorithmically with sufficient efficiency. In
this paper we will now describe only an outline of what these final steps
consist of.

The results of this will then be described in the next Section 7, after
further specialization to the simpler case that the number of ‘‘laps of
linearity’’ per period, L, is minimal, i.e., equal to one. A proper derivation
in the case of general L will be given elsewhere. (15)

This ‘‘final stage’’ of our derivation will now be described in words
and will take five steps:

(1) The first step is to reinterpret the probability densities on the line
R or the circle R/Z as electric field strength distributions in a problem of
one-dimensional electrostatics.
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(2) Then, in a second step, the calculation in terms of the electric
field strength distribution is replaced by one in terms of the derivatives of
these fields, which are then to be interpreted as ‘‘charge densities.’’ This
requires the original PF operator governing the movement of probability
densities of the original representation to be transformed accordingly.

An important circumstance here is that in the above translation from
fields to charges, which is simply that of differentiation, no information is
lost, provided that eu ] 1, because in the inverse process, which is that of
integration, the integration constant is fixed by the quasi-periodicity con-
dition Eq. (38) on the result.

This charge density representation has the added advantage that the
correspondingly transformed PF operator tends to decrease the charge
densities, on average, at least in case the system is ergodic and mixing, by a
factor which is conjectured to be equal to the largest Lyapunov exponent.
Already intuitively one can therefore expect this process to converge, as
long as the system is ergodic and mixing. To this it may be added that the
explicit form of the solution, which is found this way, will also specify
explicitly the set of conditions under which the method will be applicable.

(3) The next step is to write down the possible form an eigenfunction
of the PF operator can have. In the case of an F having a finite number, L,
of laps of linearity per period, this requires L as yet undetermined con-
stants; but then, in the end, one must impose, for each interval of linearity,
an independent condition requiring the total charge within the interval to
vanish. Such charge neutrality can always be achieved by introducing a
charge double layer of appropriate strength at each point between two laps.

This leads to a system of L linear equations in as many unknowns, the
L2 coefficients of which are recursively calculable functions of l and u.

(4) The condition of solvability of this system then leads to a single
condition on a determinant function (here termed ‘‘Consistency Function’’)
for it to vanish.

(5) This determinant then can be seen to contain as one of its roots
the desired function l0(u).

Remarks.

(1) A proper, more explicit account of this derivation will be given
elsewhere. (15)

(2) As was already mentioned in the Introduction, the result
described here in general terms generalizes Mori’s result, (11) which is a
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formula for the Fredholm determinant in the case of the general piecewise
linear interval map.

The generalization is one from interval maps to lifted circle maps, both
in the piecewise linear case. It is this more general formulation which
allows for the possibility of transport phenomena to occur.

In the next Section 7 the solution in the case L=1 will be treated
explicitly; in which case the Consistency Function mentioned is the func-
tion C of Eq. (57).

6. SPECIALIZATION TO THE CASE L=1:
A TWO-PARAMETER MODEL

We specify such a map by two parameters a and b so that, accord-
ingly, F will now be specified completely by

F(x)=ax+b, (39)

and specifying finally also the value taken on by F at x=1
2 . The latter

number is chosen arbitrarily but will not enter into any of our considera-
tions below since these will be confined to ‘‘physical’’ quantities such as
the cn’s, and the latter will not depend on that choice.

Hence, a and b are effectively the only parameters which specify the
system. They are termed the ‘‘system parameters.’’

Our interest will primarily be the chaotic region characterized by

|a| > 1. (40)

As for notation: In case we want to consider different members of our
two-parameter set of models and of maps, we may denote the dynamical
map F specified above as Fa, b.

6.1. ‘‘b-Symmetries’’

The present two-parameter problem obeys certain simple symmetries,
and it is advantageous to explicitly consider the corresponding symmetry
group.

In addition to the map T defined in Eq. (19) we now also introduce R,
the reflection map, by

R(x)=−x. (41)
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These two maps generate a group as follows: As said, its generators
are T and R, and these satisfy the relations

R2=id (42)

and

TRT=R. (43)

The elements of this group belong to two separate classes: respectively
C0={Tn | n ¥ Z} and C1={TnR | n ¥ Z}, with C0 a normal subgroup of the
group.

This symmetry group occurs here as a transformation group of R and
it will be of interest, as we shall see in the following, to determine the fixed
points. We find that, with the exception of the identity no other element of
C0 has a fixed point, whereas every element of C1 has one: The element
TmR leaves the point x=m/2 invariant. Considering now this collection of
these fixed points we see that, with respect to this group, there are two
classes, the integer and the half-integer numbers.

We can also classify all elements of R, which in this context has to be
regarded as the b-axis, with respect to this group, and we obtain the result
that the closed interval 0 [ b [ 1

2 is a fundamental subset of the b-axis with
respect to this symmetry group. Hence, the two boundary points of this
closed interval play a special rôle here. As we shall see, it is here that the
model displays its most irregular behaviour.

We now list the effects which these symmetries have on the the two-
parameter set of maps Fa, b. We consider only the effect of these two
generators T and R:

(1) Translation symmetry:

(T1) Fa, bT=Fa, b+1, (44)

cf. Eqs. (1) and (20), and the

(2) Reflection symmetry:

(R1) Fa, −b=RFa, bR. (45)

It follows from this in a straightforward manner that, for all n \ 1,

(T2) cn(a, b+1)=cn(a, b)+dn, 1 (46)
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and

(R2) cn(a, −b)=(−1)n cn(a, b). (47)

These symmetry relations imply that for the study of the model
throughout its entire parameter plane it is sufficient to restrict oneself to
b-values within the closed interval given by

0 [ b [ 1
2 . (48)

This specifies what we call the ‘‘fundamental strip’’ in the parameter
plane.

Parts of this ‘‘fundamental strip’’ are used in our Figs. 1, 5, 6, and 7.

7. CONSTRUCTION OF THE CONSISTENCY FUNCTION

In this section we construct the Consistency Function for our two-
parameter model. As stated already, this function contains the Fredholm
determinant function of the problem and is of central importance in the
solution: It determines all of the ‘‘near-equilibrium’’ transport properties cn
with in particular J and D, but also the spectrum from which time-depen-
dent quantities can be obtained.

7.1. The Kneading- and the y-Sequences

Up to now we had considered one fixed ‘‘fundamental interval’’
denoted by I0, but now, for the explicit construction of the solution, we will
need two such ‘‘fundamental’’ intervals. If in the sequel reference will be
made to I0, or indirectly to it by referring to ‘‘the associated circle map f ’’
which is defined on the basis of I0, we will assume that I0 is just either one
of the half-open unit intervals IE0 defined by

I+0=(−
1
2 ,
1
2] and I−0=[−

1
2 ,
1
2). (49)

This puts us now in a position to also define recursively, for a given
parameter pair (a, b) with |a| > 1 and each value + or − of E separately,
a pair of sequences of numbers, the yF E sequence and the nF E sequence,

yF E={yEr | r \ 0}, (50)
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and

nF E={nEr | r \ 1} (51)

consisting of real numbers and of integers, respectively, as follows:
We start with

yE0=
E

2
(52)

and then continue recursively, for all r \ 1, by means of the relations

nEr+y
E
r=ay

E
r−1+b (53)

and the conditions

nEr ¥ Z and yEr ¥ I
Eg r

0 , (54)

where the sign g is defined by

g=sign(a) — a/|a|. (55)

We note that the above implies that, for all r \ 0, Eg ryEr ¥ I
+
0 .

The integers nEr are analogous to the kneading numbers known from
the theory of maps of an interval onto itself. (17, 18) In fact, they are topolog-
ical invariants of the map F in the sense that, if we would perform an arbi-
trary topological, i.e., continuous and continuously invertible transforma-
tion on the circle, these numbers would not change. This will play a rôle in
the subsequent discussion of our results.

Next, for E=± and all r \ 0, the ‘‘‘N-numbers’’ are introduced by

NEr=−
E

2
+ C−
1 [ s [ r

nEs . (56)

7.2. The Consistency Function C(l, u)

The ‘‘Consistency Function’’ C(l, u) which plays the key rôle in the
present context is now introduced by

C(l, u)= C
E=±
E C
.

r=0
(al)−r euN

E
r. (57)
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For future reference we note that, from Eqs. (49), (52)–(54), the
following upper bound can be derived:

|nEr | [ (|a|+1)/2+|b| — B (58)

which also introduces the constant B, implying that

|NEr | [
1
2+rB. (59)

It follows that series (57) converges for all (l, u) satisfying

B |R(u)| < log |al|, (60)

throughout which region the function C is therefore holomorphic. Because
of the assumption |a| > 1, this region contains the point (1, 0) in its
interior.

Also, that same region, now considered as a u-region for a given l,
contains, for all sufficiently large |l|, a complete strip of the u plane parallel
to the imaginary u-axis; and because, as we can see from the definition
Eq. (56), NEr ¥ Z+12 , C is antiperiodic, i.e., odd under the substitution
uQ u+2pi, and it vanishes at u=0. We also note that

C(., u)=−2 sinh 1u
2
2 (61)

which implies that also the D-function defined by

D(l, u)=C(l, u)/C(., u) (62)

is holomorphic in the pair (l, u) throughout the same (l, u)-region and, in
contrast to the C-function, periodic in the above sense.

It seems significant to remark, concerning these formulas, that this
proportionality factor between these C and D functions vanishes whenever
eu=1. Hence, in a way, this ‘‘weight’’ on the PF operator has been
instrumental in deriving also many non-equilibrium properties of the
system when there is no ‘‘weight.’’

The function D(l, u) can be regarded as being, in some sense, the
Fredholm determinant of the operator Lf(u) because

(1) its limit is 1 as lQ. and

(2) for fixed u, with |u| small enough, its zero set coincides with that
of C which is, as can be seen, the set of eigenvalues l of Lf(u) satisfying
(60).
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We summarize the preceding considerations with the remark that these
crucial functions C or D encountered here are not obtained by the expan-
sion of a determinant and subsequent calculation of traces of powers of
an operator as a sum over periodic orbits of a map, as in the case of the
Periodic Orbit method, (12) which are in a sense ‘‘direct’’ methods for
obtaining the desired answer, and which is also the way the zeta function is
usually defined, but in a roundabout, indirect manner, which however as
yet is only applicable in the case that d=1 and F is piecewise linear, but
then turns out to be extremely effective.

Before we formulate the central result concerning our present model
we introduce the following notation: We denote by P the class of proba-
bility measures m on the line R which have a density r given by
dm(x)=r(x) dx, which is a function of finite total variation, i.e., r can be
expressed as the difference between two nondecreasing functions. Then we
have the

Theorem (ref. 15). In the two-parameter model discussed here,
with a dynamical map F which satisfies the relations Eq. (1) and Eq. (39)
with |a| > 1, and where the probability measure m0 of the initial position x0
belongs to the class P, one has:

(1) The limit

cn(m0)=
1
n!

lim
tQ.

1
t
S(xt)nT0 (63)

exists for every n ¥N and is independent of m0; it will be denoted by cn.

(2) If u is a complex number satisfying

|R(u)| < (log |a|)/B (64)

the limit

c(u|m0)=lim
tQ.

1
t

log OeuxtP0 (65)

exists and is independent of m0; it will be denoted by c(u).

(3) The function c(u) is analytic in u in the region

|u| < (log |a|)/B (66)
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and has as its series expansion

c(u)=C
.

n=1
cnun (67)

the coefficients in which are the same cn’s as have occurred in Eq. (63).

(4) The analytic function l0(u)=ec(u) is a root of the implicit equation

C(l0(u), u)=0 (68)

singled out among all roots by the additional condition

l0(u)Q 1 as uQ 0. (69)

7.3. (c, u) Expansion

Because of the above, the right hand side of Eq. (57) can be expanded
in a converging double series in c — log l and u near (0, 0) according to

C(ec, u)= C
.

k, l=0
ukNk, l(−c) l, (70)

the coefficients of which are defined, for all k and l, by the expansions

Nk, l=C
E

ENEk, l; NEk, l=
1
k! l!

C
.

r=0
a−r(NEr)

k r l. (71)

The above infinite series is guaranteed to converge because of the
assumption |a| > 1.

7.4. Solving for the cn’s

The implicit equation (68) for c(u) can now be resolved by standard
mathematical means into a set of explicit ones, one for each expansion
coefficient cn. To show that such a resolution is possible use is made of the
relations N0, l=0 for all l \ 0 which follow trivially from the definition, of
N1, 0=0 which can be derived from the recurrence relations and the defini-
ton of N1, 0, and of the circumstance that the quantity N1, 1 never vanishs,
which is a consequence of the important inequality

N1, 1 > 0, (72)
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which can be derived by application of the Perron–Frobenius Theorem
(cf., e.g., ref. 19) to the invariant eigenfunction of the Perron–Frobenius
operator Lf(0). (15) 3

3 By a more refined analysis also a positive lower bound for N1, 1 can be derived, which can
come in handy because of the divisions by this quantity which are required.

The above inequality Eq. (72) implies in particular that division by
N1, 1 is always possible, which then leads to the following equations for the
transport properties c1=J and c2=D, which hold true for all (a, b)
throughout the chaotic region |a| > 1, in particular, independently of
whether or not for the given pair (a, b) a Markov partition exists:

J — c1=N2, 0/N1, 1 (73)

D — c2=(N3, 0−N2, 1c1+N1, 2c
2
1)/N1, 1. (74)

The expressions for the higher cumulant rates, explicit as polynomials
in the Nj, k and 1/N1, 1, become successively more complicated and are
therefore more conveniently formulated in a recursive form. (15) In the
symmetric case b=0 however, the odd order cn’s vanish and the expres-
sions for c2 and c4 read:

c2=N3, 0/N1, 1 (75)

c4=(N5, 0−N3, 1c2+N1, 2c
2
2)/N1, 1. (76)

One may notice that these latter two expressions for c2 and c4 in the
symmetric case are analoguous to the preceding ones for c1 and c2 in the
general case. This analogy can be seen to persist to general order. (15)

8. COROLLARIES

We discuss here some of the consequences which can be derived
already rather effortlessly from the defining relations for the kneading
sequences in Section 7.1 and the further relations of Section 7.

The consequences we discuss here are about existence and density of
Markov partition points and about continuity or discontinuity of the
various functions encountered here. These consequences are the following:
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8.1. Markov Partition Points

There exist two collections, say A+ and A−, of algebraic curves, both
dense throughout the chaotic region |a| > 1, such that any two curves of the
same collection do not intersect.

For given E, the points on a curve of AE are characterized by having
the same E-kneading sequence nF E. The latter may therefore be termed ‘‘the
kneading sequence of the respective curve.’’

Each curve of the collection AE has a kneading sequence which is
‘‘eventually’’ periodic, i.e., periodic after a finite number of ‘‘steps.’’

If two curves of the two different collections intersect they always do
so transversally. This is a direct consequence of the fundamental inequality
Eq. (72).

Note. These arguments do not imply that, as one would expect, any
two curves of these two collections would intersect at all. To show that,
a more refined analysis would be required.

However, what does follow here is that the point set of intersections
A=A+5A− coincides with the set of points for which the circle map
fa, b, associated to the map Fa, b on the line, has a (finite) Markov partition.

8.2. (Dis-)continuity Properties

(a) We first discuss the parameter dependence of the ‘‘N-moments’’
in terms of which the cn’s are expressed. One readily derives the following:

There exist two collections, say B+ and B−, of algebraic curves, which
are subcollections of the respective collections A+ and A−, each of which
is also, just as the collections AE, dense throughout the chaotic region
|a| > 1. A collection BE is obtained from AE by restriction to curves whose
kneading sequences nF E are required to be periodic.

The N-moments Nk, l(a, b) (cf. (71)), regarded as functions of (a, b),
are discontinuous when crossing any one of these curves, but continuous
everywhere else, i.e., everywhere outside the set B=B+2B−.

(b) Considering now the cn’s: According to the relations of Section 7
they are expressible as rational functions of the N-moments and hence
could have been expected to be discontinuous in the same way as the
N-moments – unless, of course, a ‘‘miraculous’’ cancellation would occur.
A cancellation, miraculous or not, does indeed occur because these cn’s
themselves can be proven to be continuous throughout their domain of
definition, which is the chaotic region |a| > 1.

844 Groeneveld and Klages



The proof (15) runs analoguously to one of the continuity property in
ref. 12. A crucial ingredient is that the only effect upon the Consistency
Function in Eq. (57) of crossing any one of these ‘‘B-curves’’ is a multipli-
cation by a nonvanishing over-all factor. Hence, this crossing does not
affect any root of the equation (68), nor the value of l0(u) nor that of the
analytic function element c(u) nor that of any other root of this equation
within the domain of definition |al| > 1 of the C-function. This same is
expected to apply to any time dependent property of the system.

(c) The continuity result on J(a, b) — c1(a, b) has an important
impact on the way figures such as Figs. 5 and 6 must be produced. It
means that the point sets to be displayed where J or 12−J should have a
particular sign must consist of open regions and therefore cannot be too
‘‘wild.’’

9. PHASE LOCKING REGIONS (ARNOL’D TONGUES)

The phenomenon of phase locking in lifted circle maps is basically well
understood. In the case of the present model with a > 0, the regions where
this takes place have been determined exactly: In the non-chaotic regime
0 [ a [ 1 in ref. 16 and in the chaotic regime 1 [ a they are given here.

A region in parameter space where the system exhibits phase locking
can be interpreted as the dynamical analogue of a thermodynamic ‘‘phase;’’
‘‘phase locking’’ then can be seen as a case of ‘‘spontaneous symmetry
breaking,’’ the symmetry being then that of ‘‘time translation.’’

In our present model we are not aware whether there would exist any
other ‘‘dynamical phases’’ than ‘‘phase locking’’ or ‘‘no phase locking.’’

Therefore, the subdivision of the parameter plane into these Arnol’d
tongues and their complement, which latter could be called ‘‘the ergodic
phase,’’ deserves the name ‘‘Dynamical Phase Diagram’’ of the model.

This forms an important part of our display of the positive-a part of
the parameter plane in Fig. 7.

9.1. The Boundaries of the Arnol’d Tongues in the Two a-Regimes

In formulating these results we adopt the following further notation:
In considering any particular Arnol’d tongue inside of which the fixed

value of J is equal to the rational number q: p, we will adopt the conven-
tion that p and q are relatively prime integers with p positive. This we call
the ‘‘standard convention.’’
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We summarize here the equations for the boundaries of the Arnol’d
tongues in the two a-intervals. We denote these respectively by i=0 and
i=1:

i=0: 0 [ a [ 1 and i=1: 1 [ a. (77)

The equations for these boundaries in the non-chaotic interval 0 [ a [ 1
(the case i=0) have been determined by Ding and Hemmer. (16) They are,
for easy access, reproduced here also.

Those in the second, chaotic a-interval have been obtained by one of
the authors. (15)

We now first introduce some further notations:
For a given, fixed rational number J=q:p and i=0 or 1, we write the

equations for these boundaries in the form

b−i (a) [ b [ b
+
i (a), (78)

whereby it is understood that they hold true for b -values such that the dif-
ference Dbi(a) defined by

Dbi(a)=b
+
i (a)−b

−
i (a) (79)

is nonnegative. In addition to these quantities Dbi(a) we also introduce the
following notation for the midpoint b̄i(a) of such a b interval. I.e., we
define this quantity by

b̄i=
1
2 (b

+
i +b

−
i ). (80)

It is clear that, in order to know the bounds bEi (a) it is sufficient to
know Dbi(a) and b̄i(a).

9.2. The Ding–Hemmer Formula for the Case 0 [ a [ 1

The result of Ding and Hemmer (16) can now be formulated as follows:

(0.1) Their result implies for b̄0(a):

2b̄0(1−ap)/(1−a)=2q−1+ap−1−2(1−a) D/a (81)

where D is the polynomial in a defined by

D —D(a)=C
p−1

n=1

5nq
p
6 ap−n (82)
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and [x] is the ‘‘entier function’’ defined by

[x] ¥ Z, 0 [ x−[x] < 1. (83)

(0.2) Their result implies for b̄0(a):

Db0(a)=
(a−1)2 ap

a(1−ap)
. (84)

9.3. The Result for the Case a > 1

Also for the case i=1, a > 1 the equations for the boundaries of the
Arnol’d tongues have now been obtained. (15) They can be summarized in
the form:

(1.0)

b̄1(a)=b̄0(a) (85)

(1.1)

Db1(a)=
(a−1)2 (2−ap)
a(ap−1)

. (86)

We note that, although the boundary curves of the two Arnol’d
tongues with the same value of the current but lying on different sides of
the line a=1 are given by different equations, the equations for the quan-
tities b̄i(a) and Dbi(a) in terms of which these boundary equations can be
expressed, are closely related. The first of these relations is the above
Eq. (85), and the second is the following proportionality relation:

Db1(a)
(ap−2)

=
Db0(a)
ap
. (87)

9.4. Corollaries of These Formulas

From Eq. (86) one finds, as can also be derived by a simple argument,
that a tongue, with a > 1, characterized by integers p and q according to
the above convention, will have an intersection of positive length with a
line of constant a if and only if a satisfies

1 < ap < 2 (88)
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implying that, in a plot of D(a, b) at constant a with a > 1, the collection of
finite-length intervals with vanishing D which occur are exactly those which
have a current J equal to a rational value J=q:p with p satisfying the
above inequality (88).

And there will be no other intervals with vanishing D because, outside
any one of the Arnol’d tongues, D(a, b) is a fractal function of b which
cannot vanish—identically in b that is—in any finite-length b-interval.

10. RESPONSE: MACROSCOPIC AND MICROSCOPIC

Here we list the various types of response we have found reason to
distinguish in our model:

(1) Negative Macroscopic Response

(2) Fractal Nonlinear Response

10.1. Macroscopic Response

As mentioned, a striking feature of our model is that, when the
parameters a and b are chosen in the right range, there is a good chance
that for the response to be negative.

There are two versions of this effect:

(I) The current J and the bias b may have opposite signs, i.e.,
J(a, b)/b < 0. This is felt as counter-intuitive and would need an explanation.

It occurs most frequently when b is rather small, and a just above any
odd integer, see Figs. 5 and 7.

(II) The ‘‘dual’’ version of the same effect is when 1
2−J and 1

2−b
have opposite signs.

It is just as ‘‘counter-intuitive’’ as the first version of the effect, as can
be seen most clearly by performing a coordinate transformation on the
x-axis xQ 1

2−x and similarly replacing b by 12−b.
That two such versions of the effect occur may be seen to be correlated

with the fact that a ‘‘fundamental interval’’ for the b parameter of the
model has two symmetry points, which are at the end points of the ‘‘fun-
damental interval’’ 0 [ b [ 1

2 .
For the same reason the ‘‘fundamental strip’’ chosen for the (a, b)

plane is a closed region bounded by the two straight lines given by these
b-values.
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To study these two effects more closely we have plotted both effects,
respectively, in Figs. 5 and 6, and as it has come out, these plots look quite
similar to each other apart from an interesting shift in the a direction over
a unit distance.

These two effects become more and more pronounced the closer one
gets to the respective symmetry line and for a moment could even be
thought of as being in conflict with some basic law of Statistical Mechan-
ics. However, the latter can of course not be true because the dynamics is
not Hamiltonian. Nevertheless, this feeling of counter-intuitiveness remains,
calling for a better explanation of the effect or a better understanding of
what precisely that intuition would tell us.

From the Figs. 5 and 6 it looks as if, in each of two these ‘‘versions’’
of the effect, the boundary has a nontrivial structure on any sufficiently
small scale and hence (20) should be considered a ‘‘fractal set.’’

We note that phenomena somewhat similar to our ‘‘negative currents’’
is observed in certain model systems known as ‘‘ratchets,’’ where typically
the word ‘‘current reversal’’ is used (cf., e.g., ref. 21).

10.2. Microscopic Nonlinear Response

The strong, even fractal, nonlinearity of the various responses found in
our model brings to mind, after a long period, discussions taking place
concerning the range of validity of the hypothesis of Linear Response.

Let us recall that Linear Response as such is an experience of everyday
life, which since day and age has found its expression in countless pheno-
menological laws of physics, such as Ohm’s law, Fick’s law and many other
ones.

A derivation of such linearities, under quite general circumstances,
directly from the laws of Statistical Mechanics of many-particle systems,
was put forward by Kubo, (22) whose theory, or ‘‘hypothesis’’ as we like to
call it, has since then become a fundamental and by now well-established (23)

part of the Nonequilibrium Statistical Mechanics of many-particle systems.
However, already at an early stage, Van Kampen (24) expressed his

concern about the lack of mathematical rigour of the derivation and has
put in doubt the general validity of the hypothesis.

That Linear Response cannot be valid in complete generality has since
then been proven by the discovery of certain counter-examples, one of
which is that of the non-existence of the usual hydrodynamical equations in
two dimensions.4

4 We owe this remark to H. van Beijeren.
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Therefore, general conditions, sufficient or necessary, under which the
hypothesis of Linear Response is valid, seem to be to this moment not
known and it is here, when an attempt should be made to clarify this issue,
that our present model might prove useful.

In fact, the model provides a clear scenario as to how Linear Response
can be violated, a scenario which might also be present in more realistic
cases. It can even not be excluded that strong effects similar to the ones
found in our present model could occur also in Hamiltonian systems.

11. THE FIGURES

In this section we will discuss in more detail the figures of this paper.
Fig. 1. Projected three-dimensional plot of (a) the current J(a, b) and

(b) the diffusion coefficient D(a, b) as functions of the system parameters a
and b. One may notice, in part (a), close to the upper corner of the graph at
a just above 2 and b just below 1

2 , the ‘‘bump’’ or little ‘‘hill.’’ The existence
of such a local maximum of J implies, as is not difficult to see, that what
we have termed our ‘‘alternative ratio,’’ (12−J)/(

1
2−b), is negative in that

region.
As we already explained, the relation between these two effects may

lose some of its mystery by realizing that both b=0 and b=1
2 are ‘‘sym-

metry points’’ of the b-symmetry group of Section 6.1, in the sense that
each is a fixed point of a reflection subgroup of that symmetry group. This
analogy between the two effects can also be seen simply by changing the
x-coordinate and the b-parameter simultaneously over a distance 12 .

Fig. 2. Graphs of the diffusion coefficient D as a function of b at con-
stant a. In parts (a)–(c) the constant values of a are respectively a=1.125,
1.075, and 1.0375.

These values are chosen so as to approach, in an approximately geo-
metric fashion, the transition line at a=1 between the non-chaotic and one
of the two chaotic regions (the other chaotic region being located at
a < −1).

In part (d) these three graphs are superimposed, in a close-up contain-
ing in each case the interval of vanishing D around b=1/3.

On these graphs one may observe:

(1) As a decreases towards the limiting value 1 where the transition
to non-chaotic behaviour takes place, the number of intervals with D=0
increases rapidly whereas separate plots of J (not shown here), show that
inside such intervals J has a constant, always rational value.

(2) Outside of these intervals, D(a, b) shows fractal behaviour as a
function of b.
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Fig. 1. Projected three-dimensionsal plots of the current J(a, b) and the diffusion coefficient
D(a, b), as functions of a and b.

Fig. 2. Graphs of the diffusion coefficient D as a function of b at constant a. In parts (a)–(c)
a is held constant at respectively the values a=1.125, 1.075, and 1.0375.

Negative and Nonlinear Response 851



(3) Around these intervals, D(a, b) shows spikes, which usually is an
indication of a critical behavior of some sort. However, from the continuity
of D(a, b) throughout the chaotic region |a| > 1 (15) it follows that D cannot
become infinite and could only become unbounded when approaching the
line a=1. This is not the case in this figure, so that the observed ‘‘spikes’’
must be finite. This, however, leaves open the possibility that some deriva-
tive of D, in as far as it may exist, would become infinite.

Elaborating a little further on the first point (1) above, one may verify
in more detail that each of these observed intervals of vanishing D is indeed
determined by the intersection of the line of constant a with a respective
Arnol’d tongue. This can be verified as follows:

The formulas for the Arnol’d tongue boundaries presented in Sec-
tion 9 imply that such a tongue with J=q/p in the standard notation will
extend between a=1 and a maximum value of a given by a=21/p so that a
line of constant a will intersect those and only those Arnol’d tongues which
have a p-value satisfying ap < 2. For the three graphs shown in the parts
(a)–(c) of this figure this means that the maximum values of p are respec-
tively 5, 9 and 19. With this information it is then easy to identify, in these
three graphs, for each interval of vanishing D the rational value of J=q:p.
For example, in part (a) one will in this way identify for the successive
observed intervals with D=0 the following values of J respectively:
J=0:1, 1:5, 1:4, 1:3, 2:5 and 1:2. A similar identification is possible for
the other two graphs.

In other words, the graphs of this Fig. 2 nicely illustrate the theoretical
explanation given in Section 9 for the existence of Arnol’d tongues in this
model.

Fig. 3. Graphs of the current J(a, b) as a function of a, at constant b,
for three different values of b. In part (a): b=0.1, in part (b): b=0.01 and
in part (c): b=0.001.

Again, as in the case of D in the preceding figure, a highly irregular
behaviour of this function emerges, which becomes wilder and wilder the
closer b gets to 0.

One may notice here, on comparing these three graphs, that, only
roughly speaking since J has so much variation in it, each time b is scaled
down by a factor 10, J also scales down but by a smaller factor; as was
already necessary in order to keep all points of the curve inside the picture.
This by itself is already indicative of nonlinear behaviour in b, which,
however, is not so simple to describe by a single exponent since so much
appears to depend on the precise value of a at which one lets b approach to 0.

This b-dependence of J(a, b) as b approaches to 0 appears to depend
quite sensitively on the value of a. Some of this can be made more precise.
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Fig. 3. Graphs of the current J(a, b) as a function of a at constant b. In parts (a)–(c) b is
held constant at respectively the values b=0.1, 0.01, 0.001.

For example, as can be proved from e.g., Eq. (73), for a equal to an odd
integer, J=b exactly.

In the general case one can say something about the range of limiting
values taken by J(a, b)/b as bQ 0: For general a it can be shown to be
unbounded, whereas the ratio J(a, b)/(b(|log |b|)) remains bounded but
has, for a general choice of a, no limit. More details will be given else-
where. (15)

We mention one other observation which can be made on comparing
these three graphs. It is that, as b decreases towards 0, there appear more
and more intervals on which J/b is negative.

Fig. 4. Here, the ratio J(a, b)/b is displayed as a function of 10log b,
for b ranging through eight decades from b=1 on downwards. This is at
the three different constant values of a as indicated in the figure.

For each of these three values of a the current J shows a highly
irregular behavior as a function of b, persisting, upon enlargements of the
graph, on finer and finer scales, which is indicative of a fractal structure of
J(a, b) as a function of b.

Negative and Nonlinear Response 853



-16

-14

-12

-10

-8

-6

-4

-2

0

-8 -7 -6 -5 -4 -3 -2 -1 0

J(
a,

b)
/b

log b

slope = 3.0001
slope = 3.01
slope = 3.8

Fig. 4. The ratio J(a, b)/b as a function of 10log b, with b ranging over eight decades.
Herein, a is held constant at the three different values as indicated in the figure.

Also, one observes in all three graphs that the ratio J/b is negative
over rather large b-intervals. To our knowledge, this is the first finding
of ‘‘negative currents’’ in simple piecewise linear one-dimensional maps.
Therefore, both effects, that of negativity of J/b and nonlinearity of J
versus b, show up in these graphs, and there is no indication that even-
tually, from a certain small value of b on, this behaviour will disappear and
a regime of linear response will be reached, i.e., where J/b would approach
a constant.

But the situation is a bit more complicated: There are special values
of a, e.g., if a is an integer, such that, quite trivially, J(a, b)=b identically
for all b.

Also, this should not be confused with the ‘‘large field linearity’’ of
J(a, b) meaning that J will become asymptotically equal to b, a property
which follows in an elementary way from the fact that J(a, b)−b is perio-
dic and hence bounded so that J(a, b)/b will tend to 1. This holds quite
generally under quite weak conditions for lifted circle map systems. But
here at least it can be concluded that, as b increases, J(a, b) will eventually
become positive and remain so.

We also note that the three values of a were chosen here so as to let a
approach, in a roughly geometric fashion, to the integer value a=3, which
is a value for which a plot of the ratio J/b would show no irregular behav-
iour at all, since this ratio then is identically equal to 1. The observation
therefore is that, the closer one gets to a regular point such as a=3, the
more pronounced the singular behaviour seems to become; but that is has
disappeared completely when the limiting point has been reached.
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Fig. 5. Various close-ups of parts of the parameter plane where the
phenomenon of ‘‘macroscopic negative response,’’ i.e., where J(a, b)/b < 0
takes place. In part (a), the regions where J(a, b)/b < 0 are depicted in
grey, and their boundaries in black. In parts (b) and (c) further enlarge-
ments of these regions are given where only the boundaries with J(a, b)
changing sign are depicted. One notices the self-similar structures which
become visible; whose precise nature however is not clear yet.

Fig. 6. This figure is similar to Fig. 5 except that here the sign of the
‘‘alternative’’ ratio (12−J(a, b))/(

1
2−b) is mapped out, instead of that of

J/b. In these graphs, only the boundaries of the regions of constant sign of
this ‘‘alternative’’ ratio, i.e., the curves where J(a, b)=1

2 , are depicted.
Fig. 7. This figure needs a longer than usual explanation because of

the many details of so many different kinds it contains. We term it our
‘‘chart,’’ as it displays broadly speaking the ‘‘qualitative features’’ of the
system we have found in our preliminary survey. These features are all
integer-valued which makes this two-dimensional chart possible. They are

Fig. 5. Various close-ups of parts of the parameter plane where ‘‘macroscopic negative
response’’ occurs, i.e., where J(a, b)/b < 0. In part (a), regions with J(a, b)/b < 0 are coloured
grey, and the boundaries thereof, which is where J changes sign, are in black. Parts (b) and (c)
are further enlargements displaying now only these boundaries. Each contains an inset with a
further enlargement, making the self-similar structures present in these boundary curves
visible. Their precise nature is not yet clear.
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Fig. 6. This figure is quite similar to Fig. 5 except for two differences: (1) These curves
display the ‘‘alternative’’ quantity 12−J(a, b) rather than the quantity J(a, b) as in the previous
figure. (2) The b-scale used is different. Taking the latter into account one observes that this
negativity effect starts off here earlier, i.e., around a=2 rather than around a=3, and is then
accordingly also larger, as compared to the case of Fig. 5.

Fig. 7. This figure, which is our ‘‘chart’’ of the model, displays values of invariants which
are of four different types. For a detailed explanation of the figure itself see Section 11.
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of four different types, labelled from I to IV. Those labelled I, II or III are
clearly invariants of a respective, well-known invariance group, which will
be indicated below. Also in the case IV a similar association seems possible.

Because of the b-symmetries discussed in Section 6.1, we have, without
lack of generality, restricted our attention to the strip 0 [ b [ 1

2 , termed
there the ‘‘fundamental’’ strip of the parameter plane.

The information displayed in this figure is in the form of

(a) the brackets containing three integers;
(b) various kinds of lines and curves, and
(c) the shaded areas near the two boundary lines of the graph, at

b=0 and b=1
2 .

As for (a): the pair of integers on top are the local values of the
kneading numbers n+1 and n−1 whereas the integer on the bottom is the
number of fixed points Fix(f) of the associated circle map f (cf. Sec-
tion 3).

As for (b): Each curve or line is where a respective kneading number
changes its value.

(b1) The sequence of dashed straight lines are in that way ‘‘indica-
tors’’ of one particular sequence of the first order kneading numbers. In the
sequence of straight lines, when it has entered the non-chaotic region
0 [ a [ 1, the last one has become a boundary of an Arnol’d tongue, the
one with J=0, p=1, q=0.

(b2) The ‘‘zig-zagging’’ sequence of curves, nearly parallel to the
straight lines of (b1), are ‘‘indicators’’ in the above sense of a similar
sequence kneading numbers, this time of order 2. As this sequence has
entered the non-chaotic region, the last one has become a boundary of the
Arnol’d tongue characterized by J=1:2, p=2, q=1.

(b3) Most of the other curves indicate boundaries of Arnol’d
tongues. Those which are displayed prominently, in the chaotic as well as
in the non-chaotic regions, are the complete sets with p-values ranging
from p=1 up to p=5. These have been plotted using the exact equations
for these boundaries of Section 9.

(b4) Near the line a=1 also the boundaries of in principle all
higher order (and much smaller) ‘‘chaotic’’ Arnol’d tongues are displayed.
These have been plotted using the computer program implementing
formula Eq. (73).

(b5) The dotted vertical line at a=1 denotes the boundary
between the chaotic and the non-chaotic regions, which is where the sign of
the Lyapunov exponent, an invariant of Type III, changes.
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As for (c): The shaded areas near the boundaries at b=0 and b=1
2 are

where either one of the two ‘‘macroscopic’’ responses is negative. These
regions are also shown, on much larger scales, in Figs. 5 and 6.

In the list below we summarize in which way, i.e., by which ones of the
above listed signs (a)–(c), the information on the values of some of the
invariants of the four types I–IV is displayed in this final Fig. 7:

(I, p and q of Section 9; Ergodic Theory): b3, b4.

(II, Kneading numbers, Order Topology): a, b1, b2, b3.

(III, Sign of Lyapunov exponent: b5.

(IV, The signs of the two current-to-bias ratios): c.

12. FURTHER PROBLEMS AND OUTLOOK

One of the features of our model of which we would like to obtain a
better understanding, from a ‘‘physical’’ or ‘‘probabilistic’’ point of view,
would be the mechanism which is responsible for the ‘‘negative response’’
observed in certain regions of the parameter plane. One approach would be
to make a further mathematical analysis of the explicit but subtle formula
Eq. (73) for J of Section 7 determining that sign.

Another approach would be to take advantage of the connection (25)

between the present model and certain types of ratchet models (26) in which
‘‘negative currents,’’ or, in the terminology used, ‘‘current reversals,’’ also
occur. The dynamical origin of the negative currents in these models is
currently under discussion. (27, 28) For a recent review on ratchet models see,
e.g., ref. 21.

13. SUMMARY

We have investigated a simple two-parameter model of chaotic
dynamical transport, along lines of earlier investigations, (9–11) but this time
using as our principal tool the exact expressions for the transport proper-
ties J and D obtained recently. (15)

These formulas are explicit and allow for a highly efficient (‘‘polyno-
mial time’’) computation, but analytically they are quite subtle, and the
functions they represent have a fractal character. For this reason it was
necessary to implement them numerically, in order to obtain at least a
reasonable impression of the various properties of the model.

In the course of this both numerical and analytical investigation some
unexpected features of the model then came to light, as are displayed here
in several figures and are amply discussed.
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Our most significant findings are of two kinds:

(1) The ubiquitous continuous but fractal parameter dependence of
every one of the ‘‘near-equilibrium’’ transport coefficients, such as the
current J=c1 and the diffusion coefficient D=c2, throughout the chaotic
part of the parameter plane, naturally with the exception of the Arnol’d
tongues where they are constant anyway. Only one particular aspect of this
is the ‘‘fractal nonlinearity’’ of the current J(a, b) as a function of b,
implying that, for most a-values, the limit of J/b as bQ 0 does not exist.

(2) A second, hitherto unexpected and thus far counter-intuitive
feature of our model is the negativity of the ratio J/b in many regions of
the parameter plane. This effect has two complementary versions, each
relative to its respective symmetry line in the (a, b) plane. These effects
occur in irregularly shaped regions which are of positive measure; and
which regions close in onto the respective symmetry line, thereby showing
critical behaviour.
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